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• Brief review of the Type-II “W” Antimonide laser  –  Concept &
configurations

• Critical beam-quality issue  –  How can we maintain low output divergence
for a broad (high-power) pump stripe?

• Mid-IR angled-grating distributed feedback (α-DFB) laser

• α-DFB with Virtual Mesa or Spoiler geometry  –  Produced by ion
bombardment

• Photonic crystal distributed feedback (PCDFB) laser  –  Theoretical
projections + Demo

OVERVIEW



TYPE-II  “W”  LASER

      ADVANTAGES:

• (1) Strong wavefunction overlap
–  For high gain

• (2) 2D DOS for both electrons &
holes
–  For high differential gain

• (3) Excellent electrical confinement
–  Prevents leakage

• (4) Auger suppression (5-10
confirmed in lasers)
–  Reduces threshold at high T

First room-temperature interband mid-IR
laser (Pulsed optical pumping, 1996)
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INTERBAND  III-V  MID-IR  LASERS  (Pulsed)
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W still only room-temperature interband III-V laser beyond 3 µm  –  Also longest λ

Stokes et al., JAP 86, 4729 (1999)



W  MID-IR  VCSEL [with Dave Chow et al., HRL]

First III-V VCSEL beyond 2.2 µm 

Motivations:
• Circular beam
• Single-mode output
• Ultra-low threshold 
• 2D arrays
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W INTERBAND  CASCADE  LASER [with U. Houston]

Pulsed W-ICL operated to 286 K [Olafsen et al., APL 72, 2370 (1998)] 
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W  DIODES  [with Sarnoff Corp.]

Interperiod hole transport via L1 states

(5 or 10 W-QW Periods)

"Hole-Blocking" Layer
Sometimes Added
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Pulsed Tmax = 310 K
[Lee et al., EL 35, 1743 (1999)]

CW Tmax = 200 K
[Bewley et al., APL 76, 256 (2000)]

Predict room-temperature
cw with 1-2 QWs
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CW  PERFORMANCE

0 10 20 30
0.0

0.2

0.4

0.6

0.8

25% DC

(tp = 0.47 ms)
25% DC

cw

T  = 140 K

T  = 77 K

Uncoated Facets

λ
out

 = 3.2 µm

 

O
ut

pu
t P

ow
er

 (
W

/F
ac

et
)

Pump Power (W)

CW Power 
[Bewley et al., JQE 35, 1597 (1999)]

To further increase cw output power, need to improve efficiency: (1) IA, (2) OPIC

CW Tmax (All 3-5 µµm Semiconductor Lasers) 

[Bewley et al., APL 74, 1075 (1999)]
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OPTICAL  PUMPING  INJECTION  CAVITY  (OPIC)
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Reduced Loss
[Bewley et al., PTL 12, 477 (2000)]

Enhanced Efficiency (Pulsed)
[Felix et al., APL 75, 2876 (1999)]

OPIC: Fabry-Perot etalon
for pump beam  –  Strong
absorptance with only a

few QWs!

Preliminary quasi-cw:  Pout = 1.3 W at 25% duty cycle, 2 W at 10% duty cycle

Pump

Mid-IR Output



Stripe

Single lateral mode 

Narrow stripe (< a few λλ):

Near-diffraction-limited

Wide stripe (>> λλ) for high power:

Many lateral modes 

Wide angular divergence

BEAM  QUALITY  vs.  STRIPE  WIDTH

Challenge:  Good beam quality from a wide stripe?



ANGLED-GRATING  DISTRIBUTED
FEEDBACK  LASER  (αα-DFB)

• Originally developed by SDL for
visible/near-IR (λ = 0.6-1.55 µm)

• NRL demonstrated first mid-IR
α-DFBs (optically-pumped)

Zigzag path of diffracted
beam yields high degree

of angular selectivity

α-DFBFabry-
Perot

Bartolo et al., APL 76, 3164 (2000)
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MID-IR  αα-DFB  –  FAR  FIELD

Near-diffraction-limited  –  But only to stripe widths ≤≤ 50 µµm

F-P α-DFB

Bartolo et al., APL 76, 3164 (2000)



FAR  FIELD  vs.  STRIPE  WIDTH,  PUMP  INTENSITY
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Mid-IR α-DFB beam quality degrades with both increasing
pump stripe width & increasing pump intensity
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FAR  FIELD  +  NEAR  FIELD

F-P Onset
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Data suggest beam-quality degradation
at wide pump stripes & high pump

intensities due to Fabry-Perot-like facet-
to-facet lasing  –  Theory agrees

Also confirmed by quasi-cw near-field
characterization (Anish Goyal, MIT-LL):



MODE  CONFINEMENT  WITH  ION-BOMBARDMENT
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• Bombardment damage
turns gain into loss

• Suppresses Fabry-Perot
modes

• Alternative:  Ion-bombarded
“spoilers”:
Bartolo et al., APL 78, 3394 (2001)



VIRTUAL  MESA  &  SPOILER  αα-DFBs

Virtual Mesa & Spoiler significantly improve beam quality at wide
pump stripes  –  Fabry-Perot-like modes suppressed
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Etendue reduced by nearly order of magnitude!  –  However, some
efficiency penalty so far

BEAM  QUALITY  ENHANCEMENT

Combining angular divergence and spatial near-field contributions:



2D grating simultaneously diffracts along two axes (Rows + Columns)  –  Combines &
enhances best features of DFB (Spectral purity) & α-DFB (Narrow divergence)

Vurgaftman et al., APL 78, 1466 (2001)
See also: S. Kalluri et al., ASLA, AWA6 (1999) 

Grating requires only shallow etch
similar to conventional 1D DFB

Both diffractions couple P1 to P2 +
both counter-propagating waves (-P1

& -P2) –  Result is strong coherence
across wide stripe (No filamentation)!
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PHOTONIC  CRYSTAL  DFB  LASER  (PCDFB)

Distinct from photonic bandgap lasers (with wide gap in all directions)  –  PCDFB
has only narrow gap in selected directions



SINGLE-MODE  PCDFBs

Project much higher single-mode power than any earlier approach
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Novel Time-Domain Fourier Transform (TDFT) calculation developed to model
performance [Vurgaftman et al., APL 78, 1475 (2001)] :
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Patterned on Sarnoff Type-II
“W” wafer grown for α-DFB

(λ ≈ 4.6 µm)

Optimal 1st-order 2D grating requires e-beam lithography  –  But 2nd-order
grating features large enough to pattern with optical lithography

Dimensions:
4.09 x 1.49 µm

Etch Depth:  100 nm

Tilt Angle:  20º

QUICK  PCDFB  LASER
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PCDFB  SPECTRAL  PROPERTIES

α-DFB from same wafer showed no appreciable spectral narrowing
PCDFB line narrows by factor of 4 when on resonance (180 K)



2ND  RESONANCE

No output between the 2 resonances (4.6 µm & 4.7 µm), but 2-color laser at
intermediate T (e.g., 210 K)  –  Order of magnitude narrowing at 240 K
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WAVELENGTH  vs.  TEMPERATURE

2 resonant PCDFB modes have nearly flat λ(T)
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THRESHOLD  vs.  TEMPERATURE

On-resonance PCDFB has same threshold as Fabry-Perot



PCDFB  EFFICIENCY  vs.  STRIPE  WIDTH

PCDFB efficiency ≈ 30% of Fabry-Perot value  –  Theory projects 50-60% in
optimized structures (α-DFB was 60-70%)
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FAR  FIELD  vs.  STRIPE  WIDTH

Gradual degradation of beam quality with increasing stripe width

-10 -5 0 5 10

w  = 50 µm

200 µm

400 µm

Far Field

T = 183 K

I = 10 x I
th

 

P
ow

er
 (

A
rb

. U
ni

ts
)

Angle (°)



-10 -5 0 5 10

2DDFB Far Field

w  = 200 µm

I = 5 x Ith

T = 210 K

T = 240 K

T = 180 K

 

 

P
ow

er
 (

A
rb

. U
ni

ts
)

Angle (°)

FAR  FIELD  vs.  TEMP  (BOTH  RESONANCES)

The 2 resonant modes emit either side of zero angle  –  Data qualitatively consistent
with TDFT predictions, although full understanding will require further investigation



BEAM  QUALITY  vs.  STRIPE  WIDTH

Up to factor of 5 improvement (w = 200 µm) over α-DFBs from same wafer
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NEW  &  IMPROVED  IA  αα-DFB

α-DFB from new LL IA wafer displays superior wide-stripe etendue  –  Implies
reduced (internal loss) x (linewidth enhancement factor) product
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SUMMARY

• Mid-IR α-DFB

– Near-diffraction-limited to w ≈ 50 µm

– But rapid degradation with increasing w

– Hardly any spectral narrowing

• Virtual Mesa & Spoiler α-DFBs (Ion bombarded)

– Both prevent Fabry-Perot-like lasing  –  Etendue
reduced nearly order of magnitude out to w = 300 µm

– But some reduction of efficiency  –  Net factor of 3 higher brightness

• Photonic Crystal DFB

– Theory projects higher single-mode powers than any
other diode approach  –  Adaptable to any wavelength

– PCDFB laser demo (2nd-order grating)  –  Substantial spectral narrowing
(up to x10), beam quality enhancement (x5) over α-DFB


