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AlSb/InAs HEMTs with a 0.1um gate length have been fabricated
with a thin InAs subchannel separated from the InAs channel by
30A of AlSh. As a result, these HEMTs exhibit improved charge
control and a higher current-gain cutoff frequency. The devices have
a microwave transconductance of 850mS/mm and an f; of 180GHz
at Vpg = 0.6 V. After subtracting the gate bonding pad capacitance,
an f; of 250GHz was obtained.

AISb/InAs HEMTs are candidates for high-speed and low-bias volt-
age applications due to the attractive features of this material sys-
tem, which include high electron mobility and velocity, high sheet
charge density and good carrier confinement. These features should
enable improved scaling of the current-gain cutoff frequency as the
gate length is reduced to the nanometre range The HEMTs, how-
ever, are susceptible to charge control problems associated with
impact ionisation in the InAs channel. These effects become increas-
ingly pronounced as the gate length is reduced due to the higher
fields present, thus hindering the performance of short-gate length
HEMTSs. The large 1.35eV conduction band offset of the AISb/InAs
heterojunction offers unique opportunities to reduce impact ionisa-
tion effects by using channel layer designs that exploit quantum con-
finement in this region. In this Letter, we report the DC and
microwave characteristics of 0.1um AISb/InAs HEMTs which
exhibit improved charge control due to the addition of a thin InAs
subchannel.
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Fig. 1 HEMT starting material
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Fig. 2 Calculated band structure

The AISb/InAs HEMT material was grown by molecular beam
epitaxy on a semi-insulating (100) GaAs substrate. A 2.5um
undoped AISb buffer layer was used to accommodate the 7% lattice
mismatch. A cross-section of the device, showing the material layer
design, is shown in Fig. 1. The energy band diagram for Vg = 0
obtained from a self-consistent calculation is shown in Fig. 2, where

the Poisson equation, the 2D density of states, and the non-para-
bolicity in the InAs quantum wells have been taken into account
Modulation doping was achieved through the use of a thin Si-doped
InAs layer located 125A above the 100 A undoped InAs channel

The large confinement energy of the 12A InAs quantum well allows
the electrons to transfer into the InAs main channel. Modulation
doping using a thin Si-doped InAs layer located below the channel
has previously been used to fabricate AISb/InAs inverted HEMTs

The Iny ,Aly ¢As/AISb composite barrier enables the use of a gate

recess etched into the upper barrier material prior to gate metal defi-
nition, which otherwise would be prohibited by the high reactivity of
the AISb in air. A 100A Si-doped GaSb layer (p = 3x10%7cm-?)
located 500 A below the InAs subchannel is intended to drain a por-
tion of the impact-ionisation-generated holes back to the source
contact rather then allowing them to remain in the AlSb buffer layer
and cause deleterious trapping effects[[5]. The room temperature
Hall mobility and sheet carrier concentration of the starting material
for the HEMTs reported here were 20000cm?/Vs and 1.9x10%c¢m,
respectively.

To reduce impact ionisation effects in the device, we introduced a
thin InAs undoped subchannel layer which, due to quantisation, has
a larger effective bandgap. The 42A subchannel layer is separated
from the 100A InAs channel by 30A of AISb. This approach is con-
ceptually similar to the InGaAs/InP composite-channel design used
in InP-based HEMTs [6], where electrons are transferred to a larger-
bandgap subchannel before gaining enough kinetic energy for
impact ionisation. The thickness of the subchannel was chosen so
that not only its lowest subband (E';) lies slightly above the second
subband (E,) of the main InAs channel at Vg5 =0V, but also E', - E,
is smaller than the effective bandgap of the main channel. When the
device is under an increasing negative gate bias, the separation
between E; and E'; is reduced. As E, and E', are aligned, the possi-
bility for electrons resonantly tunnelling into the subchannel
through E, is strongly enhanced. Electrons can also undergo real
space transfer to the subchannel by incoherent tunnelling. As a
result, the extent of impact ionisation in the channel is reduced.

The HEMTs were fabricated using Pd/Pt/Au source and drain
ohmic contacts which were formed by heat treatment on a hot plate.
A Cr/Au Schottky-gate was then formed using PMMA-based e-
beam lithography and lift-off techniques. Finally, device isolation
was achieved by wet chemical etching. With this etch, a gate air
bridge was formed which extends from the channel to the gate bond-
ing pad.
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Fig. 3 HEMT drain characteristics

Lo =0.1pm, Lgp = 1.0pm, W = 26pm, Vgg = 0.1Vi/step

A typical set of drain characteristics for HEMTs with a 0.1um
gate length is shown in Fig. 3. The low-field source-drain resistance
at Vgs =0V is 0.55 Qmm. At Vs = 0.5V, a transconductance above
800mS/mm is observed from Vg = -0.1 to —-0.5V, with a maximum
value of 1.3S/mm occurring at Vgg = —0.35V. When compared to
similar devices without the subchannel, these devices exhibited lower
output conductance, particularly at more negative gate biases.

The S-parameters of the HEMTs were measured on-wafer from 1
to 40GHz. Based on the usual 6dB/octave extrapolation, an f; and
fuax Of 180 and 80GHz, respectively, at Vg = 0.6 and Vg = -0.4V
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were obtained. Using a simplified equivalent circuit, the microwave
transconductance and output conductance for a 100pm gate width
device were 850 and 200mS/mm, respectively, corresponding to a
microwave voltage gain of 4.2 at this bias condition. Compared to
previous 0.1pm devices of similar design , the devices exhibit a
higher transconductance and a lower gate-source capacitance which
is believed to be primarily due to the improved charge control as a
result of the addition of the InAs subchannel. After removal of the
gate bonding pad capacitance from the equivalent circuit, an f; of
250GHz was obtained, which is the highest reported for this mate-
rial system. Optimisation of the subchannel layer design is needed to
fully exploit the reduction of impact ionisation in the channel using
this approach.
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